RÉSOLUTION GRAPHIQUE DE L'ÉQUATION f(x) = 0

$$\operatorname{Où} f(x) = ax^2 + bx + c$$

FORME FACTORISÉE DE f(x)

Les racines du polynôme

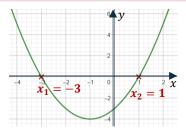
SIGNE DE f(x)

Deux solutions : x_1 et x_2

$$f(x) = a(x - x_1) \times (x - x_2)$$

 x_1 et x_2 sont les **racines** du polynôme

x		<i>x</i> ₁		<i>x</i> ₂	
Signe du polynôme $a(x-x_1)(x-x_2)$	Signe de a	0	Signe de $-a$	0	Signe de a



$$f(x) = x^2 + 2x - 3$$

f(x) = 0 lorsque:

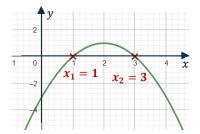
$$x_1 = -3$$
 et $x_2 = 1$

$$f(x) = 1(x - (-3) \times (x - 1))$$

Soit, en écriture simplifiée :

$$f(x) = (x+3) \times (x-1)$$

x		-3		1		
Signe de $f(x) = (x+3)(x-1)$	+	ø	_	0	+	
a = 1		i i		i		



$$g(x) = -x^2 + 4x - 3$$

$$g(x) = 0$$
 lorsque:

$$x_1 = 1 \text{ et } x_2 = 3$$

$$g(x) = -1(x-1) \times (x-3)$$

Soit, en écriture simplifiée :

$$g(x) = -(x-1) \times (x-3)$$

x		1		3	
Signe de $g(x) = -(x-1)(x-3)$	_	0	+	0	_
a = -1				1	

Ĭ

Propriété:

Pour chacun des polynômes de ce type, *les racines* x_1 et x_2 vérifient $\mathbf{a} \times \mathbf{x_1} \times \mathbf{x_2} = \mathbf{c}$.

Cette relation permet de calculer la deuxième racine connaissant l'autre.

Exemple:

Le polynôme $P(x) = 4x^2 - 20x + 24$ admet deux racines dont l'une est $x_1 = 2$.

Pour calculer la deuxième racine x_2 :

- On lit dans l'expression de P que a = 4 et c = 24.
- On remplace dans la relation $a \times x_1 \times x_2 = c$.
- $4 \times 2 \times x_2 = 24 \iff 8 \times x_2 = 24 \iff x_2 = 24 \div 8 = 3$
- Les deux racines de P sont donc $x_1 = 2$ et $x_2 = 3$

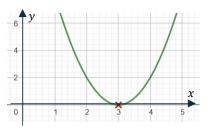
Une solution « double » : x_0

$$f(x) = a(x - x_0)^2$$

 $h(x) = 2(x-3)^2$

 x_0 est la racine double du polynôme

x		<i>x</i> ₀	
Signe du polynôme $a(x-x_0)^2$	Signe de a	0	Signe de a

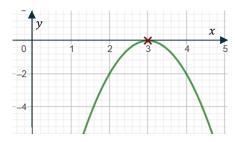


$$h(x) = 2x^2 - 12x + 18$$

h(x) = 0 lorsque:

$$x_0 = 3$$

x		3		
Signe du polynôme $2(x-3)^2$	+	ø	+	



$$i(x) = -2x^2 + 12x - 18$$

$$i(x) = 0$$
 lorsque:

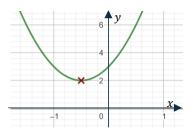
$$x_0 = 3$$

I.	÷
	Г
_	
$(x) = -2(x-3)^2$	
$(x) = -1(x - 3)^{2}$	
(x) = 2(x + 3)	

x	3
Signe du polynôme $-2(x-3)^2$	- 0 -

Aucune solution

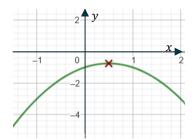
Le polynôme n'admet pas de forme factorisée.



$$i(x) = 4x^2 + 4x + 3$$

j(x) = 0 n'admet aucune solution

 \boldsymbol{j} n'est pas factorisable.



$$k(x) = -x^2 + x - 1$$

k(x) = 0 n'admet aucune solution.

 ${m k}$ n'est pas factorisable.